Skip to main content

The atomic bomb

On July 16, 1945, at 5:29:45 a.m., the Manhattan Project comes to an explosive end as the first atom Bomb is successfully tested in Alamogordo, New Mexico desert when a plutonium implosion device was tested at a site located 210 miles south of Los Alamos on the barren plains of the Alamogordo Bombing Range, known as the Jornada del Muerto. Inspired by the poetryof John Donne, J. Robert Oppenheimer code-named the test Trinity. Hoisted atop a 100-foot tower, the plutonium device, or Gadget, detonated releasing 18.6 kilotons of power, instantly vaporizing the tower


and turning the surrounding asphalt Plans for the creation of a uranium bomb by the Allies were established as early as 1939, when Italian emigre physicist Enrico Fermi met with U.S. Navy department officials at Columbia University to discuss the use of fissionable materials for military purposes. That same year, Albert Einstein wrote to President Franklin Roosevelt supporting the theory that an uncontrolled nuclear chain reaction had great potential as a basis for a weapon of mass destruction
It has been 75 years since the first atom Bomb went off and that started a race which we called the nuclear arms race which today we are having over 14,500 nuclear weapons in the world.
How does a nuclear fission and an atomic Bomb works

When a neutron strikes the nucleus of an atom of the isotopes uranium-235 or plutonium-239, it causes that nucleus to split into two fragments, each of which is a nucleus with about half the protons and neutrons of the original nucleus. In the process of splitting, a great amount of thermals energy, as well as gamma Ray's and two or more neutrons, is released. Under certain conditions, the escaping neutrons strike and thus fission more of the surrounding uranium nuclei, which then emit more neutrons that split still more nuclei. This series of rapidly multiplying fissions culminates in a chain reaction in which nearly all the fissionable material is consumed, in the process generating the explosion of what is known as an atomic bomb.
JOIN OUT TELEGRAM TV HERE

On July 16, 1945, at 5:29:45 a.m., the Manhattan Project comes to an explosive end as the first atom Bomb is successfully tested in Alamogordo, New Mexico desert when a plutonium implosion device was tested at a site located 210 miles south of Los Alamos on the barren plains of the Alamogordo Bombing Range, known as the Jornada del Muerto. Inspired by the poetryof John Donne, J. Robert Oppenheimer code-named the test Trinity. Hoisted atop a 100-foot tower, the plutonium device, or Gadget, detonated releasing 18.6 kilotons of power, instantly vaporizing the tower


and turning the surrounding asphalt Plans for the creation of a uranium bomb by the Allies were established as early as 1939, when Italian emigre physicist Enrico Fermi met with U.S. Navy department officials at Columbia University to discuss the use of fissionable materials for military purposes. That same year, Albert Einstein wrote to President Franklin Roosevelt supporting the theory that an uncontrolled nuclear chain reaction had great potential as a basis for a weapon of mass destruction
It has been 75 years since the first atom Bomb went off and that started a race which we called the nuclear arms race which today we are having over 14,500 nuclear weapons in the world.
How does a nuclear fission and an atomic Bomb works

When a neutron strikes the nucleus of an atom of the isotopes uranium-235 or plutonium-239, it causes that nucleus to split into two fragments, each of which is a nucleus with about half the protons and neutrons of the original nucleus. In the process of splitting, a great amount of thermals energy, as well as gamma Ray's and two or more neutrons, is released. Under certain conditions, the escaping neutrons strike and thus fission more of the surrounding uranium nuclei, which then emit more neutrons that split still more nuclei. This series of rapidly multiplying fissions culminates in a chain reaction in which nearly all the fissionable material is consumed, in the process generating the explosion of what is known as an atomic bomb.


fission this is what we call the chain reaction .
Many isotopes of uranium can undergo fission, but uranium-235, which is found naturally at a ratio of about one part per every 139 parts of the isotope uranium-238, undergoes fission more readily and emits more neutrons per fission than other such isotopes. Plutonium-239 has these same qualities. These are the primary fissionable materials used in atomic bombs. A small amount of uranium-235, say 0.45 kg (1 pound), cannot undergo a chain reaction and is thus termed a subcritical mass; this is because, on average, the neutrons released by a fission are likely to leave the assembly without striking another nucleus and causing it to fission. If more uranium-235 is added to the assemblage, the chances that one of the released neutrons will cause another fission are increased, since the escaping neutrons must traverse more uranium nuclei and the chances are greater that one of them will bump into another nucleus and split it. At the point at which one of the neutrons produced by a fission will on average create another fission, critical mass has been achieved, and a chain reaction and thus an atomic explosion will result.
In practice, an assembly of fissionable material must be brought from a subcritical to a critical state extremely suddenly. One way this can be done is to bring two subcritical masses together, at which point their combined mass becomes a critical one. This can be practically achieved by using high explosives to shoot two subcritical slugs of fissionable material together in a hollow tube. A second method used is that of implosion, in which a core of fissionable material is suddenly compressed into a smaller size and thus a greater density; because it is denser, the nuclei are more tightly packed and the chances of an emitted neutron’s striking a nucleus are increased. The core of an implosion-type atomic bomb consists of a sphere or a series of concentric shells of fissionable material surrounded by a jacket of high explosives, which, being simultaneously detonated, implode the fissionable material under enormous pressures into a denser mass that immediately achieves criticality. An important aid in achieving criticality is the use of a tamper; this is a jacket of beryllium oxide or some other substance surrounding the fissionable material and reflecting some of the escaping neutrons back into the fissionable material, where they can thus cause more fissions. In addition, “boosted fission” devices incorporate such fusionable materials as deuterium or tritium into the fission core. The fusionable material boosts the fission explosion by supplying a superabundance of neutrons.

fission bomb
The three most common fission bomb designs, which vary considerably in material and arrangement.
Encyclopædia Britannica, Inc.
Fission releases an enormous amount of energy relative to the material involved. When completely fissioned, 1 kg (2.2 pounds) of uranium-235 releases the energy equivalently produced by 17,000 tons, or 17 kilotons, of TNT. The detonation of an atomic bomb releases enormous amounts of thermal energy, or heat, achieving temperatures of several million degrees in the exploding bomb itself. This thermal energy creates a large fireball, the heat of which can ignite ground fires that can incinerate an entire small city. Convection currents created by the explosion suck dust and other ground materials up into the fireball, creating the characteristic mushroom-shaped cloud of an atomic explosio

n. The detonation also immediately produces a strong shock wave that propagates outward from the blast to distances of several miles, gradually losing its force along the way. Such a blast wave can destroy buildings for several miles from the location of the burst.         The first atomic Bomb use in WARFARE.
The first atomic bomb to be used in warfare used uranium. It was dropped by the United States on Hiroshima, Japan, on August 6, 1945. (See Sidebar: The Decision to Use the Atomic Bomb.) The explosion, which had the force of more than 15,000 tons of TNT, instantly and completely devastated 11.4 square km (4.4 square miles) of the heart of this city of 343,000 inhabitants. Of this number some 70,000 were killed immediately, and by the end of the year the death toll had surpassed 100,000. More than 67 percent of the city’s structures were destroyed or damaged. The next atomic bomb to be exploded was of the plutonium type; it was dropped on Nagasaki on August 9, 1945, producing a blast equal to 21,000 tons of TNT. The terrain and smaller size of Nagasaki reduced destruction of life and property, but 39,000 persons were killed and 25,000 injured; about 40 percent of the city’s structures were destroyed or seriously damaged. The Japanese initiated surrender negotiations the next day. TV

fission this is what we call the chain reaction .
Many isotopes of uranium can undergo fission, but uranium-235, which is found naturally at a ratio of about one part per every 139 parts of the isotope uranium-238, undergoes fission more readily and emits more neutrons per fission than other such isotopes. Plutonium-239 has these same qualities. These are the primary fissionable materials used in atomic bombs. A small amount of uranium-235, say 0.45 kg (1 pound), cannot undergo a chain reaction and is thus termed a subcritical mass; this is because, on average, the neutrons released by a fission are likely to leave the assembly without striking another nucleus and causing it to fission. If more uranium-235 is added to the assemblage, the chances that one of the released neutrons will cause another fission are increased, since the escaping neutrons must traverse more uranium nuclei and the chances are greater that one of them will bump into another nucleus and split it. At the point at which one of the neutrons produced by a fission will on average create another fission, critical mass has been achieved, and a chain reaction and thus an atomic explosion will result.
In practice, an assembly of fissionable material must be brought from a subcritical to a critical state extremely suddenly. One way this can be done is to bring two subcritical masses together, at which point their combined mass becomes a critical one. This can be practically achieved by using high explosives to shoot two subcritical slugs of fissionable material together in a hollow tube. A second method used is that of implosion, in which a core of fissionable material is suddenly compressed into a smaller size and thus a greater density; because it is denser, the nuclei are more tightly packed and the chances of an emitted neutron’s striking a nucleus are increased. The core of an implosion-type atomic bomb consists of a sphere or a series of concentric shells of fissionable material surrounded by a jacket of high explosives, which, being simultaneously detonated, implode the fissionable material under enormous pressures into a denser mass that immediately achieves criticality. An important aid in achieving criticality is the use of a tamper; this is a jacket of beryllium oxide or some other substance surrounding the fissionable material and reflecting some of the escaping neutrons back into the fissionable material, where they can thus cause more fissions. In addition, “boosted fission” devices incorporate such fusionable materials as deuterium or tritium into the fission core. The fusionable material boosts the fission explosion by supplying a superabundance of neutrons.

fission bomb
The three most common fission bomb designs, which vary considerably in material and arrangement.
Encyclopædia Britannica, Inc.
Fission releases an enormous amount of energy relative to the material involved. When completely fissioned, 1 kg (2.2 pounds) of uranium-235 releases the energy equivalently produced by 17,000 tons, or 17 kilotons, of TNT. The detonation of an atomic bomb releases enormous amounts of thermal energy, or heat, achieving temperatures of several million degrees in the exploding bomb itself. This thermal energy creates a large fireball, the heat of which can ignite ground fires that can incinerate an entire small city. Convection currents created by the explosion suck dust and other ground materials up into the fireball, creating the characteristic mushroom-shaped cloud of an atomic explosio

n. The detonation also immediately produces a strong shock wave that propagates outward from the blast to distances of several miles, gradually losing its force along the way. Such a blast wave can destroy buildings for several miles from the location of the burst.         The first atomic Bomb use in WARFARE.
The first atomic bomb to be used in warfare used uranium. It was dropped by the United States on Hiroshima, Japan, on August 6, 1945. (See Sidebar: The Decision to Use the Atomic Bomb.) The explosion, which had the force of more than 15,000 tons of TNT, instantly and completely devastated 11.4 square km (4.4 square miles) of the heart of this city of 343,000 inhabitants. Of this number some 70,000 were killed immediately, and by the end of the year the death toll had surpassed 100,000. More than 67 percent of the city’s structures were destroyed or damaged. The next atomic bomb to be exploded was of the plutonium type; it was dropped on Nagasaki on August 9, 1945, producing a blast equal to 21,000 tons of TNT. The terrain and smaller size of Nagasaki reduced destruction of life and property, but 39,000 persons were killed and 25,000 injured; about 40 percent of the city’s structures were destroyed or seriously damaged. The Japanese initiated surrender negotiations the next day.

Comments

Popular posts from this blog

CAVE HYENA

CAVE HYENA            Cave Hyena also known as the ice age spotted hyena or in the scientific world is called Crocuta Crocuta spelae they live from the pleistocene-modern years from 2million yeras to around 10,000 years ago in the plains of Eurasia 🌏.         The cave hyena is so closely related to todays spotted hyena‭ (​‬Crocuta crocuta​‭) ‬from Africa that it is actually considered a sub species to this genus.‭ ‬Some however have still raised the notion about whether remains named as cave hyena should be classed as a distinct sub group,‭ ‬although the majority of palaeontologists agree that they are different enough to keep them separated.‭ ‬This difference is seen in the longer femur‭ (‬thigh bone‭) ‬and humerus‭ (‬upper foreleg bone‭) ‬of the cave hyena,‭ ‬something that is seen as an adaptation for more efficient locomotion.        They mostly feed on wild horses like Przewalski's horse‭ (‬Equus fe...